先进的加工技术与装备是提高生产率和保证产品质量的重要基础。在先进的汽车模具企业中配有双工作台的数控机床、自动换刀装置(ATC)、自动加工的光电控制系统、工件在线测量系统等已不鲜见。数控加工已由单纯的型面加工发展到型面和结构面的全面加工,由中低速加工发展到高速加工,加工自动化技术发展十分迅速。
模具的型芯和型腔往往具有各种自由曲面,非常适合在数控机床上进行加工。数控加工的工艺与普通加工工艺有较大区别。本文结合儿童产品装饰物的模具型芯的数控加工工艺技术。
在世界上规模最大的汽车模具制造厂商COMAU公司的覆盖件模具车间,有一条由6台数控机床组成的加工模具的生产线。模具的粗加工、半粗加工和精加工在不同的机床上完成。机床之间的工件转运和传递系统,将上一工序完成后的工件转运至下一台机床,并将其定位。类似的模具自动化加工生产线在日本丰田公司、德国大众和奥迪公司的模具加工车间都可以看到。
目前,已在模具生产中已经应用的加工自动化方式大体上可分为三种,即由多台可互换工作台数控机床组成的生产线、柔性加工生产线和一体化加工中心。第一种生产线包括了底面加工、粗铣、精铣等多台机床,工件换机床时不必重新装卡找正。由于机床为多工作台式,工件不需要重新装卡,因而加工效率很高。带立体仓库的柔性加工生产线,控制方法先进,适用面广,不足之处是控制程序编制和准备工作耗时较多。一体化加工中心是一种粗精加工一体化的五面加工中心,其优点是除底面加工之外,一次装卡可实现全部加工面的高速、高精度加工,生产效率非常高,是模具自动化加工技术的一个重要发展方向。
数控加工工艺是指采用数控机床加工零件时,所运用各种方法和技术手段的总和,应用于整个数控加工工艺过程。由于数控加工具有加工效率高、质量稳定、对工人技术要求相对较低、一次装夹可以完成复杂曲面的加工等特点,所以,数控加工在模具制造行业的应用越来越广泛,地位也越来越重要。数控工艺设计的好坏将直接影响数控加工尺寸的尺寸精度和表面质量、加工时间的长短、材料和人工的耗费,甚至直接影响加工的安全性。下面通过实例对典型模具成型零件的数控加工技术进行分析。
一、产品分析
本文举例的产品为一款儿童产品的装饰物,材料为ABS。产品的结构比较简单,表面平整,侧面有半圆孔,顶部有多个圆孔。由于该产品是装饰品,不属于精密的结构件,故产品的外观质量要求较高,尺寸公差要求不严格。
二、成型零件结构与分析
在获得产品的实体造型或者工程图后,其模具可以使用Pro/ENGINEER、NX或者MasterCAM中的CAD功能进行设计,设计出来的模具型芯如图2所示。
该模具型芯具有以下特点:
(1)型芯毛坯尺寸为200×170×65mm,加工后尺寸为160.8×126.6×35.8mm,材料为S136钢。
(2)型芯胶位高度为35.8mm,椭圆面与三角形面相交的位置圆角偏小,只有R1mm。这些位置用铣刀直接加工的话难度较大,可以利用放电加工达到要求。
由于产品的尺寸公差要求不高,所以可以对该型芯直接使用数控机床进行精加工。
三、工艺分析
数控加工工艺与传统的加工工艺是有一定区别的。由于数控机床大多都不具备工艺处理能力,加工过程的每一细节都必须预先确定,加工按照编好的程序自动完成,因此, 必须在编程前对加工工艺做详细的分析,并设计好相应的加工工序。
1.工艺基准选择
数控加工多采用工序集中原则进行加工,因此,在选择工艺基准时,应尽可能选择合适的基准要素,减少装夹次数,提高加工效率和加工精度;同时,选择定位基准时,需参照图纸的要求,使工艺基准与设计基准重合,减少因基准不重合带来的误差。
本例中,工件毛坯是经过磨削加工的长方体坯料,平行度、垂直度和尺寸精度都已得到保证,因此,可以选用长宽两方向相对面作为水平方向(XY方向)的基准;选用底面作为高度方向(Z方向)的基准。同时在机床上找一对刀基准,以保证换刀后仍然可以准确地找到编程的高度基准,即工件坐标系的Z0点。这些基准面在数控加工过程中不再加工,作为加工基准可以保证基准的准确性和前后的统一性。